

Current Transducer LA 25-NP/SP9

For the electronic measurement of currents: DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

1.5 A

Electrical data

I _{PN}	Primary nominal r.m.s. current		1.5	•	Α
I _P	Primary current, measuring range		0 ± 2.2		Α
$R_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{ m M\ min}}$	$R_{_{ m M\ max}}$	
	with ± 15 V	$@ \pm 1.5 A_{max}$	100	320	Ω
		$@ \pm 2.2 A_{max}$	100	190	Ω
I _{SN}	Secondary nominal r.m.s. current		24		mΑ
K _N	Conversion ratio		16:10	00	
V _c	Supply voltage (± 5 %)		± 15		V
Ic	Current consumption		10 + I _s		mA
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		2.5		kV
V _b	R.m.s. rated voltage 1), safe separation		600		V
-	ba	asic isolation	1700		V

Features

- · Closed loop (compensated) multiturns current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

• I_{PN} = 1.5 A • $I_p = 0 .. \pm 2.2 A$ • $\mathbf{K}_{N} = 16:1000.$

Accuracy - Dynamic performance data

$\overset{\textbf{X}}{e}_{\scriptscriptstyle L}$	Typical accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error		± 0.5 < 0.2		% %
I _o	Offset current ²⁾ @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$			Max ± 0.15	
I _{OM} I _{OT}	Residual current ³⁾ @ $I_p = 0$, after a Thermal drift of I_0	n overload of 3 x I _{PN} 0°C + 25°C		± 0.15 ± 0.25	
" ОТ	Thermal drift of 1 ₀			± 0.25	
t _r f	Response time $^{4)}$ @ 90 % of $\mathbf{I}_{\mathrm{P}\mathrm{max}}$ Frequency bandwidth (- 1 dB)		< 1 DC 1	150	μs kHz

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- · Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

General data

\mathbf{T}_{A}	Ambient operating temperature	0 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
R _P	Primary coil resistance @ T _A = 25°C	< 22.4	$m\Omega$
$\mathbf{R}_{\mathrm{s}}^{'}$	Secondary coil resistance @ T _A = 70°C	110	Ω
L	Primary insertion inductance	13.5	μΗ
R	Isolation resistance @ 500 V, T _A = 25°C	> 1500	$M\Omega$
m	Mass	22	g
	Standards 5)	EN 50178	

- Notes: 1) Pollution class 2
 - ²⁾ Measurement carried out after 15 mn functioning
 - 3) The result of the coercive field of the magnetic circuit
 - 4) With a di/dt of 100 A/µs
 - 5) A list of corresponding tests is available

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060919/2

Dimensions LA 25-NP/SP9 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Fastening & connection of primary 2 pins 0.635 x 0.635 mm

• Fastening & connection of secondary

• Recommended PCB hole

Remark

± 0.2 mm

1.2 mm

3 pins \emptyset 1 mm

• I_s is positive when I_p flows from terminal + to terminal -.